
Eur. Phys. J. B 31, 391–400 (2003)
DOI: 10.1140/epjb/e2003-00047-1 THE EUROPEAN

PHYSICAL JOURNAL B

Dynamic magnetization of γ-Fe2O3 nanoparticles isolated
in an SiO2 amorphous matrix

C. Caizera and I. Hrianca

Department of Electricity and Magnetism, Faculty of Physics, West University of Timisoara, Bd. V. Parvan no. 4,
1900 Timisoara, Romania

Received 25 April 2002 / Received in final form 11 August 2002
Published online 14 February 2003 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Abstract. We have studied the magnetization of a system of γ-Fe2O3 (0.68 vol.%) nanoparticles isolated
in an SiO2 amorphous matrix placed in an alternating magnetic field with a frequency of 640 Hz and in
the temperature range of (77–300) K. Compared to temperatures closer to 300 K (where the system has a
superparamagnetic behaviour), at lower temperatures, the magnetization has a dynamic hysteresis loop due
to the magnetization’s phase shift between the field and the magnetization. The delay of the magnetization
(attributed to the Néel relaxation processes) increases with the decrease of temperature. It has been
shown that the relaxation time resulting from the Néel theory is determined by an effective anisotropy
constant (Keff ) that takes into account the magnetocrystalline anisotropy, as well as the shape, surface and
strain anisotropies. In the following we will show that the surface and strain anisotropy components have
the most significant influence. When the temperature decreases from 300 to 77 K, the relative increase of
the saturation magnetization of the nanoparticles is much higher than that of the (spontaneous) saturation
magnetization of bulk γ-Fe2O3. This increase is due to the increase of the mean magnetic diameter of the
particles attached to the core of aligned spins, from 10.16 nm to 11.70 nm, as a result of the modification
of the superexchange interaction in the surface layer.

PACS. 75.50.Gg Ferrimagnetics – 75.50.Tt Fine-particle systems; nanocrystalline materials –
75.60.Ej Magnetization curves, hysteresis, Barkhausen and related effects

1 Introduction

The magnetic properties of nanoparticles dispersed in dif-
ferent media (liquid or solid) differ significantly from those
of the bulk material [1–7]. They depend to a great extent
on the surface/volume ratio of the nanoparticles. When
this ratio is high, the surface effect may predominate.
Due to their properties, nanoparticles have found vari-
ous applications e.g. in obtaining advanced materials for
data recording and storage, medical imaging, chemistry
and biology [8–10]. The nanoparticles can be prepared
through physical or chemical methods. The most impor-
tant aspects that influence the properties of nanoparticles
and which we have to keep in mind when preparing the
nanoparticles are the following: obtaining a distribution
as homogenous as possible, and isolating and controlling
the dimension of the nanoparticles. One of the methods
that meet these requirements under certain conditions is
the sol-gel method. With this method, we have obtained γ-
Fe2O3 nanoparticles dispersed in organic polymers [11,12]
or in a silica matrix [13–19]. The sol-gel method is a
suitable method for sequestering the Fe ions inside the
nanopores of the silica matrix. The porous matrix is made
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up of polysiloxane that was obtained by hydrolysis and
condensation of alkoxysilane precursors. The clusters of
iron ions are formed in situ and, after thermal treatment,
they crystallize in nanopores of the iron oxide phase, and
are then defined as well-isolated nanoparticles.

In the case of thermodynamic equilibrium, in the
absence of interactions between the particles, the mag-
netic behaviour of these systems is superparamagnetic
(SPM) [20,21] and similar to ferrofluids. The evolution of
the magnetization M as a function of the field H follows
a Langevin-type law [22]

M/M∞ = L(ζ) = cothζ − 1/ζ, (1)

where

ζ = β H/T = µ0mpH/kBT. (2)

M∞ is the saturation magnetization of the system (mag-
netization in an infinite field), mp is the magnetic moment
of the particle, T is the temperature, kB is Boltzmann’s
constant, and µ0 is the vacuum magnetic permeability.
Unlike ferrofluids, the magnetization axes of the magnetic
nanoparticles dispersed in a solid matrix are fixed because
the Brownian movement is blocked. As a result, consid-
ering the two possible relaxation mechanisms (Néel and
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Brown), only the Néel-type relaxation can take place. The
corresponding relaxation time is [23,24]

τN = τ0 exp(KV/kBT ), (3)

where K is the magneto-crystalline anisotropy constant
and V is the volume of the particle. τ0 is a time constant
and usually has a value of τ0

∼= 10−9 s.
Most research concerning the magnetic behaviour of

γ-Fe2O3 nanoparticles dispersed in a solid matrix was
made under static conditions with SQUID (superconduct-
ing quantum interference device) [14,16,25,26] or VSM
(vibrating sample) [15,27,28] magnetometers, where the
measuring time was of the order of 10 to 100 s. Under dy-
namic conditions (at different frequencies), all studies have
focussed on magnetic susceptibility [29–32]. There are no
systematic studies on the dynamic magnetization or mag-
netic relaxation processes in high fields. Under dynamic
conditions, if the frequency of the alternating field is suffi-
ciently high, the thermodynamic equilibrium states of the
magnetization do not have sufficient time to arise due to
the relaxation processes. Consequently, the system evolves
under conditions of thermodynamic non-equilibrium. The
magnetization phase will be delayed compared to the field
and the dependence M-H forms a dynamic hysteresis loop.

In this paper, we have studied the magnetization (in
high fields) of γ-Fe2O3 nanoparticles isolated in a SiO2

amorphous matrix, with a magnetic field frequency of
640 Hz, i.e. the evolution from equilibrium processes to
thermodynamic non-equilibrium processes. We achieved
this evolution by modifying the relaxation time with the
decrease of temperature from room temperature to the
temperature of liquid nitrogen. This way, the measuring
time is forced to draw closer to the value of the relaxation
time. In the interpretation of the results, we have anal-
ysed the influence of various forms of anisotropy that play
a decisive role in the magnetic relaxation processes.

2 Experimental

2.1 Experimental technique

The crystalline phases obtained in the nanocompos-
ites were identified by X-ray diffraction (XRD), in a
Dron 2.0 diffractometer using CuKα radiation, at the rate
of 1◦/min.

The magnetic measurements were made in an alter-
nating magnetic field with a frequency of ν = 640 Hz, in
the temperature range of (77 − 300) K. The experimen-
tal installation is based on the fluxmeter method [33] and
is shown schematically in Figure 1. The selective magne-
tization circuit C-L-Lc-RH (C – tuning capacitor) tuned
to the fundamental oscillation frequency (640 Hz) is sup-
plied from the power generator (G). The sample (P) with
a cylindrical shape (length 4.5 cm, diameter 4.5 mm) was
inserted into the probe coil S inside the magnetization
coil L, which is coaxial with the sample. The sample was
placed in a teflon crucible that can be fed with liquid ni-
trogen. The compensation of the µ0He component of the

Fig. 1. Diagram of the experimental installation.

magnetic induction B (B = µ0He + µ0M) was performed
with the (Lc−Sc) coil system and the input electronic cir-
cuits of the electronic block (C.E). After being processed
in the C.E, the voltage signal that is proportional to the
sample’s magnetization together with the signal that is
proportional to the He field (taken over from the pre-
cision resistor RH) was applied to the data acquisition
system (DAQ) connected to a computer (PC). The signal
inputs and outputs were separated by the voltage follow-
ers (F). The experimental installation was calibrated by
using Ni and Fe gauges. The relative deviation at the mea-
surement of the magnetization is of only 0.15%. During a
measurement the magnetic field relative variation is less
than 0.24%. The demagnetising field determined by the
sample’s geometry Hd = −NdM (Nd – demagnetizing
factor) is corrected by a calculation program, so the mag-
netization will be recorded as a function of the sample’s
H field (H = He − Hd). The temperature was measured
with a commercial Cu-(Cu/Ni) thermocouple.

2.2 Experimental results

The nanoparticles were obtained via the sol-gel method
based on the hydrolysis and condensation of alkoxysilane
precursors, followed by heat treatment, according to the
technique described in reference [34]. This procedure is
similar to the procedures that have been employed by
other authors [16,35]. This method can be used to ob-
tain the ferrimagnetic phase of γ-Fe2O3 in situ at high
temperatures (700−900) ◦C, as well as a homogeneous
distribution of nanoparticles within the silica, even in the
case of higher concentrations of Fe2O3 in SiO2 (28.5 wt%
Fe2O3) [16]. The nanopores formed in the matrix are the
place where the iron oxide particles are nucleated, thus
avoiding their aggregation [15]. The synthesis and char-
acterization of samples obtained similarly with the sol-gel
method, with different concentrations of Fe2O3/(Fe2O3-
SiO2) and treatment temperatures, were the subject of
another study [34].

In this study, we focus on the dynamic magnetisa-
tion in high fields (640 Hz) of a diluted sample (where
only the γ-Fe2O3 ferrimagnetic phase is present in the sil-
ica matrix) with a particle volume fraction of 0.68% (as
shown below) and were the measuring time approaches
the value of the relaxation time. Since the packing frac-
tion is very low, the interactions between the particles are
negligible [36,37]. The γ-Fe2O3 ferrimagnetic phase that
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Fig. 2. X-ray diffraction pattern of the sample; � – γ-Fe2O3.

appears in the silica matrix after the thermal treatment
of the gel at 800 ◦C for 3 hours was determined by X-
ray diffraction (Fig. 2). The long treatment period sta-
bilizes the γ-Fe2O3 phase. The XRD pattern shows that
the γ-Fe2O3 phase is well crystallized and that the SiO2

matrix is in an amorphous state. Our previous studies
that employed infrared spectroscopy (FT-IR), XRD and
Mössbauer spectroscopy [34] did not show characteristic
peaks of Fe-O-Si compounds (iron silicates) that might
be formed as a result of the interaction between the iron
oxide and the matrix. They do in fact appear at signifi-
cantly higher concentrations and treatment temperature
(e.g. 25% wt Fe2O3/(Fe2O3-SiO2) and 1000 ◦C) as in the
case of the sample that was studied in this paper. At
temperatures higher than 900 ◦C, the γ-Fe2O3 antifer-
romagnetic phase also appears. Other authors have also
reported the existence of the γ-Fe2O3 phase at high tem-
peratures [16,18,19,38].

The magnetization curves recorded at room tempera-
ture and the temperature of liquid nitrogen are presented
in Figure 3. At 300 K, the curve has no hysteresis, while
at 77 K the hysteresis loop is well outlined. Measurements
made at a frequency of 50 Hz have shown that, at room
temperature, there is no hysteresis (same as at 640 Hz)
and at 77 K it is hardly noticeable. Increasing the tem-
perature from 77 to 300 K, the saturation magnetization
and the remanent magnetization decrease as shown in Fig-
ures 4 and 5, respectively. The AC-susceptibility (χAC)
measured in the absence of the continuous magnetic field
at a frequency of ν = 640 Hz and an amplitude of the al-
ternate magnetic field (HA) of 10 Oe reaches a maximum
at the temperature Tmax

∼= 140 K (Fig. 6).

3 Interpretation and discussions

3.1 Superparamagnetic behavior

Fitting the experimental values of the magnetization
recorded at 640 Hz with a Langevin-type function (1),
both at room temperature and at 270 K, it can be no-
ticed that they are well aligned with the corresponding
theoretical curves (Fig. 7). This result is a first argument

Fig. 3. Magnetization as a function of the field at the temper-
atures: (a) 300 K, (b) 77 K.

Fig. 4. Saturation magnetization Msat as a function of
temperature.

Fig. 5. Remanent magnetization Mr as a function of
temperature.

that proves that the nanoparticle system has a superpara-
magnetic behaviour. However, the parameter β (Eq. (2))
– determined from the fitting – has different values for
the two curves, i.e. β300 = 0.0184 m K/A at 300 K and
β270 = 0.0205 m K/A at 270 K. For this reason, the re-
duced curves (Fig. 8) corresponding to the two tempera-
tures do not overlap. Knowing that the magnetic moment
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Fig. 6. Magnetic susceptibility χAC as a function of
temperature.

Fig. 7. Magnetization as a function of the field at the temper-
atures: (a) 300 K, (b) 270 K. The solid curves represent the
Langevin function corresponding to the two temperatures.

of the particle is mp = MsVm (Ms – spontaneous magne-
tization, Vm – magnetic volume), and taking into account
the values of β that were obtained from the fit, in agree-
ment with equation (2) we have obtained the following
result:

β270/β300 = (Dm270/Dm300)
3 = 1.114, (4)

(in the approximation of spherical particles), where Dm270

and Dm300 are the magnetic diameters of the particles at
the temperatures of 270 K and 300 K, respectively. In the
temperature range (270−300) K, the spontaneous mag-
netization has only a slight change. Since β270 > β300, we
have to consider that the magnetic diameter Dm (attached
to the ferrimagnetically aligned core spins) of the particles
increases with the decrease of temperature. If β270 is re-
placed with β270 = β300, the reduced curve corresponding
to the temperature of 270 K overlaps the curve at 300 K,
as shown in Figure 9. This proves that the reduced mag-
netization is described by a Langevin-type function and
that the system has a superparamagnetic behaviour. This
behaviour is also justified by the low value of the magnetic
packing fraction εm = M∞/Ms = 0.0068, considering that
at room temperature M∞ = 2.37 × 103 A/m (as shown
later on) and Ms = 350× 103 A/m [39]. The low value of

Fig. 8. Reduced magnetization M/M∞ (M∞ – magnetization
in infinite field) as a function of H/T for the temperatures:
300 K (�) and 270 K (�).

Fig. 9. Reduced magnetization as a function of H/T for the
temperatures: 300 K (�) and 270 K (♦) when β = β′

270 =
β270/1.114.

the packing fraction shows that the distance between the
particles is relatively big so that the magnetic interactions
between them can be neglected.

3.2 Mean magnetic diameter

Given that the reduced magnetization of the sample at
300 K follows a Langevin-type law, we can determine the
mean magnetic diameter of the nanoparticles. In order to
achieve this, we have used the values of the magnetiza-
tion from the experimental curve (a) in Figure 3 both in
low and high fields. Considering the fact that the parti-
cles have different diameters Dm, a more precise relation
describing the magnetization is [40,41]

M(H, T, Dm) =

n

∫ ∞

0

mp(Dm)L[ζ(H, T, Dm)] f(Dm) dDm, (5)

where n is the concentration of particles, and f(Dm) is the
distribution function of the diameters. In the case of the
nanoparticle system, a lognormal function is well suited
to describe the distribution of the particles according to
their sizes – as suggested by O’Grady and Bradbury [42]
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and verified experimentally by other authors [43,44]. As-
suming that in our case the diameters are distributed ac-
cording to the same function, f(Dm) will have the expres-
sion [45]:

f(Dm) =
(
1/

√
2πλmDm

)
× exp

[−(lnDm − ln D0m)2/2λ2
m

]
, (6)

where D0m and λm are parameters. The mean magnetic
diameter can be determined with the following equation

〈Dm〉 = D0m exp(λ2
m/2), (7)

where the distribution parameters D0m and λm have the
following expressions:

D0m =
[
(6kBT/πµ0MsH0) (M∞/3χiH0)

1/2
]1/3

, (8)

λm = (1/3)[ln(3χiH0/M∞)]1/2. (9)

Equations (8, 9) were obtained by solving the in-
tegral in equation (5) and using the approximation in
low and high fields when the Langevin function becomes
L(ζ) → (1/3)ζ and L(ζ) → 1 − 1/ζ, respectively. The ini-
tial susceptibility χi = 0.05 ± 2 × 10−4 is obtained from
the slope in the origin of curve (M−H). H0 = (16.67±4×
10−2)×103 A/m and M∞ = (2.37±3.6×10−3)×103 A/m
result from the extrapolation of the linear part of the
curve M−1/H . At room temperature (300 K), λm =
0.077± 2.8× 10−3 nm and D0m = 10.13± 7.5× 10−2 nm.
The value of the mean magnetic diameter 〈Dm〉300 =
10.16 ± 7.7 × 10−2 nm and was obtained from the values
determined from equation (7).

3.3 Saturation magnetization

As can be seen in Figure 4, the saturation magnetiza-
tion of the sample significantly increases at the tempera-
ture of liquid nitrogen. Its relative variation in the tem-
perature range (77−300) K is ∆Msat/Msat300 = 69.7%
(∆Msat = Msat77 − Msat300, the subscripts representing
the value of the temperature), and it is much higher than
that of bulk γ-Fe2O3 (∆Ms/Ms300 = 9.5% [10,46]) in the
same temperature range. A relative increase of the satura-
tion magnetization by ∼ 50% was also observed for Fe3O4

nanoparticles surfacted with oleic acid and dispersed in
kerosene [47]. The disorder of the spins (Fe3+ magnetic
ions) on the surface layer of the nanoparticles is responsi-
ble for this behaviour. The constant modification of β270

in relation to β300 makes us admit that there is an increase
in the mean magnetic diameter of the nanoparticles that is
associated with the ferrimagnetically ordered core due to
the superexchange interaction and a narrowing of the non-
magnetic surface layer (where the spins are not aligned).
If we take into account the value of 〈Dm〉300 that was
determined from equation (4), as a first approximation
it results that 〈Dm270〉 = 10.53 ± 0.08 nm. The increase
of the particles’ magnetic diameter 〈Dm〉 and their mag-
netic moment 〈mp〉 with the decrease of temperature has

Fig. 10. Mean magnetic diameter of the particle 〈Dm〉 as a
function of temperature.

to be followed by an increase of the saturation magneti-
zation Msat of the nanoparticle system. The experimental
results shown in Figure 4 confirm this requirement.

The saturation magnetization can be written as
follows:

Msat = n〈mp〉 = nπ〈Dm〉3Ms/6. (10)

If we apply successively equation (10) for the tempera-
tures 270 K and 300 K, respectively, the mean magnetic
diameter 〈Dm〉270 will have the following expression at a
temperature of 270 K:

〈Dm〉270 = 〈Dm〉300
× {[(Msat)270(Ms)300]/[(Msat)300(Ms)270]}1/3 · (11)

From the experimental data (Fig. 4) it results that
(Msat)270/(Msat)300 = 1.18. Taking into account that at
these temperatures (Ms)300/(Ms)270 = 0.98 [10,46], from
equation (11) we obtain that 〈Dm〉270 = 10.7 ± 0.10 nm,
a result that is in good agreement with the value found
from the modification of the parameter β (the relative de-
viation of the two values of the diameters is of only 1.6%).
This fact confirms our hypothesis that the magnetic di-
ameter attached to the core of the particle with aligned
spins due to the superexchange interaction increases with
the decrease of temperature. The mean magnetic diameter
at other temperatures can be obtained in the same way
(Fig. 10). At 77 K, it results that 〈Dm〉77 = 11.7±0.11 nm,
which corresponds to a narrowing of the mean thickness
of 〈δ〉77 = 0.77 ± 0.09 nm of the non-magnetic (paramag-
netic) surface layer of the particles.

It has to be noted that, in equation (1), M∞ cor-
responds to the magnetization when the magnetic mo-
ments of all particles are aligned in the same direction
as the field: M∞ = nmp This applies when the ex-
ternal field H → ∞. If the measured values (Msat)300
and (Msat)270 are replaced in equation (11) with the
values (M∞)300 = 2.37 × 103 A/m and (M∞)270 =
2.75 × 103 A/m, respectively, which were calculated in



396 The European Physical Journal B

a field of 108 A/m (103 times higher than the one used
in our experiment) with equation (1), the following result
is obtained: 〈Dm〉′270 = 10.6 nm. In fields higher than
108 A/m the magnetization is practically invariable. This
value differs by only 0.9% from the value that was previ-
ously calculated by using the experimental values of the
saturation magnetization (Msat)300 and (Msat)270. Fur-
thermore, at 77 K, for the H > 55 kA/m the condition
ζ = µ0mpH/kBT � 1 is met and thus the manetization
in the saturation area of the nanoparticle system can be
fitted with the function

M(H, 77) =
∫ ∞

0

(M∞)77(1 − 1/ζ)f(Dm)dDm

= (M∞)77(1 − a/H) (12)

where

a = 6kBT exp
(
9λ2

m/2
)
/
(
πµ0MsD

3
0m

)
. (13)

The best fit – considering a and (M∞)77 as parameters –
was obtained for (M∞)77 = 4.20 kA/m. If we now replace
in equation (11) the ratio (Msat)77/(Msat)300 with the ra-
tio (M∞)77/(M∞)300 we obtain the value of the magnetic
diameter at 77 K, 〈Dm〉′77 = 11.9 nm. The relative er-
ror for the value of the diameter at 77 K, considering the
magnetization (Msat)77 in a field of 105 A/m, as com-
pared to the case when the magnetization (M∞)77 was
considered in a field of 108 A/m, is of only 1.7%. This
way, since the difference ∆M = M∞ −Msat is small (e.g.
at 300 K, ∆M/M∞ is 14.8%) and it always has the same
sign (M∞ > Msat), the shape of the curve in Figure 4 does
not change due to the fact that, for saturation, we have
used the values of the magnetization that were measured
in the field of 105 A/m and the relative deviation of the
diameter at 77 K remains within acceptable limits (1.7%).

We interpret the reduction of the thickness δ of the
surface layer as being a result of the modification of
the superexchange interaction between the iron ions sit-
uated close to the surface of the nanoparticles. Due
to the interactions of the silica matrix with the iron
oxide nanoparticles, a distortion of the crystalline lat-
tice occurs in the surface area of the particles. Con-
sequently, the distance between the iron ions increases,
which then leads to a decrease of the superexchange inter-
action energy Wsch in the surface layer. Since the spon-
taneous magnetization disappears at the θN temperature
(the ferrimagnetic–paramagnetic transition temperature)
where Wsch

∼= kBθN [48], it follows that in the shell of
the particles, the transition temperature is lower than
300 K, such that at room temperature the shell is param-
agnetic. We consider that the surface layer with a thick-
ness δ is made up of several sub-layers with a thickness δn.
Since the resulting distortion decreases towards the core
of the particle, the energy of the superexchange interac-
tion Wsch and implicitly the transition temperature in-
creases from the minimum value θNs (corresponding to
the first paramagnetic layer from the surface), to the max-
imum value θN (corresponding to the ferrimagnetic core).
As the temperature T decreases below room temperature,

(T < θN(n−1) then T < θN(n−2), ...), the sub-layers (n−1),
(n−2), ..., will be successively below their transition tem-
peratures θN(n−1), θN(n−2), ... Consequently, these sub-
layers will become ferrimagnetically ordered. This order-
ing starts in the first sub-layer of the particle next to the
magnetic core and progresses towards the surface as the
temperature decreases. Thus, with the decrease of tem-
perature the diameter of the magnetic core increases to
the detriment of the paramagnetic layer, which is progres-
sively thinner. Hence, the magnetic moment of the par-
ticles mp(Dm, T ) = πMs(T )Dm(T )3/6 increases and this
leads to the large increase of the saturation magnetization
of the nanoparticle system

Msat(Dm, T ) =

n

∫
(T )

((∫∞
0 mp(Dm, T )f(Dm)dDm

)(∫∞
0

f(Dm)dDm

)
)

dT (14)

with the decrease of temperature. In equation (14)

(∫∞
0 mp(Dm, T )f(Dm)dDm

)
(∫∞

0 f(Dm)dDm

) = 〈mp(Dm, T )〉 (15)

is the mean of the magnetic moments of the particles at a
temperature T .

The existence of surface spin disorder has been proven
experimentally. Thus, for the γ-Fe2O3 nanoparticles iso-
lated in a silica matrix, obtained by the sol-gel method and
calcination of the gel at high temperatures (700−900) ◦C,
two absorption lines g ∼ 2 and g ∼ 4.3 [16] were ob-
served using electron spin resonance (ESR). The first line,
according to Sharma and Waldner [49], is due to the ferri-
magnetic resonance of the single domain particles that are
randomly oriented, since the temperature dependence of
the lines can be explained with the Raikher and Stepanov
model [50]. The second line has been attributed to a strong
disordered spin state at the surface of the particles. At
the same time, it has been shown that the mean physi-
cal diameter of the nanoparticles resulting from transmis-
sion electron microscopy (TEM) is higher than the mean
magnetic diameter that resulted from magnetic measure-
ments [16]. By means of Mossbauer spectroscopy at room
temperature [18] it has been shown that, after fitting, the
experimental data correspond to two states: an ordered
state, attributed to the Fe3+ ions inside the particle and
a disordered state, attributed to the ions in the surface
layer of the particle. Tronc et al. [51] have obtained sim-
ilar results by means of Mossbauer spectroscopy for the
γ-Fe2O3 phosphated nanoparticles (with a diameter of
4.6 nm). The authors have shown that the surface layer
of the nanoparticles is paramagnetic until a temperature of
ca. 20 K is reached. These results confirm the existence of
the surface layer of the particles, where the Fe3+ mag-
netic ions are in a disordered (paramagnetic) structure;
the thickness of the surface layer has an order of magni-
tude of 10−1 nm.
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Fig. 11. Delay time τm as a function of temperature.

3.4 Relaxation time. Dynamic hysteresis loop

By representing the values of M and H that were de-
termined experimentally as a function of time, we have
observed that at low temperatures they do not pass si-
multaneously through the zero value; namely the mag-
netization is delayed compared to the magnetic field. The
experimental results show that the delay time τm increases
with the decrease of temperature (Fig. 11). This implies a
phase shift of the magnetization by ϕm = ωτm (ω – angu-
lar velocity) compared to the field. For example, at 77 K
the delay time was of 15.7 ± 0.11 µs and the phase shift
corresponding to this time was of 0.0631 rad.

In order to check if the observed phase shift can lead to
the experimentally observed dynamic hysteresis, we have
determined the functions H(t) and M(t) corresponding to
the hysteresis loop in Figure 3b

H(t) = Hmax sin(ωt + ϕm); (ϕm > 0), (16)

M(t) =
∞∑

n=1

Mn sin(nωt). (17)

where Hmax = 100 × 103 A/m. We have calculated the
Fourier coefficients Mn up to the order of n = 75 on
the basis of the experimental values using real time Fast-
Fourier transform (FFT). We have then represented the
pairs of values found with the equations (16, 17) in the (M ,
H) plane of Figure 12 (solid curve). The fact that the cal-
culated values are in good agreement with the experimen-
tally measured values demonstrates that the existence of
the phase shift between the two observables causes the
dynamic character of the hysteresis loop. The phase shift
appears as a consequence of the relaxation processes.

If the magnetic anisotropy is reduced to the magne-
tocrystalline component, with the known values of the
magnetocrystalline anisotropy constant (Kν), the relax-
ation times (τN ) obtained with equation (3) would be of
the order of magnitude 10−8−10−9 s (e.g. three or four or-
ders of magnitude smaller than the times τm that we have
measured). This way, even at 77 K the sample should have
a superparamagnetic behaviour. This difference indicates
that, besides the magnetocrystalline anisotropy, the shape

Fig. 12. Dynamic hysteresis loop determined with the equa-
tions (16, 17) at 77 K; (�) experimental values.

Fig. 13. Effective anisotropy constant Keff as a function of
temperature.

and surface anisotropies [52] have a significant influence.
Since the particles are embedded in a solid matrix, the
interface can exert a strain on the particles. Thus, in the
equation (3), K is an effective anisotropy constant (Keff )

Keff = Kν + Ksh + Ks + Kst, (18)

where Ksh is the shape anisotropy constant, Ks =
K ′

s6/〈Dm〉 [53] where K ′
s (in J/m2) is the surface

anisotropy constant and Kst is the strain anisotropy con-
stant. Thus, according to equation (3), the relaxation
time is

τ = τ0 exp(Keff 〈Vm〉/kBT ). (19)

If we consider that the time corresponding to the phase
shift is equal to the relaxation time (τm = τ), from equa-
tion (19) it results that

Keff =
(
6kBT/π〈Dm〉3) ln(τm/τ0). (20)

We have calculated Keff at different temperatures
(Fig. 13), using the resulting values of 〈Dm〉 (Fig. 10)
and τm (Fig. 11). Fitting the points in the figure and ex-
trapolating the curve (Keff − T ) at room temperature,
we obtain the following value: Keff = 4 × 104 J/m3, a
value that has an order of magnitude higher than Kν =
4.6 × 103 J/m3 [54,55] corresponding to bulk γ-Fe2O3.
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Other authors have obtained higher values of Keff (up to
one order of magnitude higher) for γ-Fe2O3 nanoparticles
at room temperature, than the values we have obtained.
Vassiliou et al. [56] obtained a value of 4.4× 105 J/m3 for
particles with a diameter of 8.3 nm in a polymer matrix,
and Coey et al. [57] obtained a value of 1.2×105 J/m3 for
particles with a diameter of 6.5 nm. These higher values
can be attributed to the smaller diameter of the nanopar-
ticles (in the case of smaller particle diameters the surface
effect is more significant) and to the fact that they are dis-
persed in different matrices. Thus, in the case of γ-Fe2O3

nanoparticles with a diameter of ∼15 nm the value of the
effective anisotropy constant is of 4 × 104 J/m3 [58], a
value that is in good agreement with the value that we
have determined.

If we consider that the particles have the shape of ro-
tation ellipsoids, the shape anisotropy constant can be de-
termined with the relation

Ksh = −(1/2)(Nz − Ny)µ0M
2
s , (21)

where Nz and Ny are the demagnetising factors, con-
sidering z, y and x as being the axes of the ellipsoid
(z > y = x). Taking into account the values of these
factors [59] and considering a mean ellipticity of the par-
ticles of 1.1, we obtain Ksh = 2.9×103 J/m3. Taking into
consideration the values determined for the Kν and Ksh

constants, according to equation (18) it results that the
surface and the strain anisotropies have the most signifi-
cant contribution to the magnetic anisotropy. However, if
we assume that K ′

s ∼ 10−5 J/m3 [53] (for nanoparticles
with a diameter of ∼ 10 nm at room temperature), then
Ks is ∼ 6×103 J/m3. According to this result we can state
that at higher temperatures (closer to room temperature),
the strain determines the magnetic anisotropy. With the
decrease of temperature T , the Keff constant decreases
as shown in Figure 13. The decrease of the Keff constant
can be attributed both to the decrease of Ks due to the
increase of the magnetic diameter of the particles (accord-
ing to Néel [52] and Papusoi [53]) and to the modification
of strain exerted by the interface of the silica matrix on
the particles (Kst). Since the particles are isolated in the
matrix it is difficult to separate the surface effect from
the strain effect and to establish the contribution of each
component to the total anisotropy. But if we take into
consideration that the increase of the magnetic diameter
is not very high, the decrease of the constant Keff can
be attributed to a large extent to the decrease of Kst.
Due to the fact that in the temperature range that was
considered for our study the average volume dilatation co-
efficient of the particle (〈αp〉) is sensibly higher than the
average volume dilatation coefficient of the matrix (amor-
phous SiO2) (〈αm〉), at the decrease of temperature there
will be a higher decrease of the particle volume than the
volume of the matrix cavities that surround the particles.
Consequently, there will be a weakening of the strain ex-
erted by the interface on the particle, which leads to a
decrease of the constant Kst and implicitly of the con-
stant Keff .

It is known that the magnetic susceptibility has a max-
imum at the blocking temperature TB when the measuring

time tm becomes equal to the relaxation time τ [60,61].
For a non-interacting particle system with a particle size
distribution, the mean blocking temperature is given by
Tmax, the exact relation depending on the form of the
distribution. As a first approximation, Tmax = 〈TB〉 for
the same average volume [62,63]. In our case, the re-
laxation time τm = 6 µs (Fig. 11) and the mean mag-
netic diameter of 11.6 nm (Fig. 10) correspond to the
blocking temperature 〈TB〉 = Tmax

∼= 140 K from Fig-
ure 6. Considering that tm = τm and T = 〈TB〉, with
the above-mentioned values, from equation (20) we obtain
Keff = 2.0 × 104 J/m3. This value is in very good agree-
ment with the value corresponding to the temperature (T )
of 140 K (Fig. 13) determined with other methods. This
result is a further confirmation that the value of the Keff

constant that we have determined is correct.

Although the Keff constant decreases with the de-
crease of temperature due to the surface effect, this de-
crease and the simultaneous increase of the mean mag-
netic diameter of the particles lead to an overall effect
that results in the increase of Keff 〈Vm〉/kBT . According
to equation (19), this leads to an increase of the relax-
ation time τ considered as being equal to the time τm

corresponding to the phase shift (ϕm). Accordingly, the
phase shift and, implicitly, the remanent magnetization,
increase (Fig. 5). Under static conditions, according to
the Stoner-Wolhfarth model [64] for a nanoparticle sys-
tem, when the external magnetic field that saturated the
sample becomes zero, the remanent magnetization will be

Mr = (1/2)SBMs. (22)

In the case of well-isolated particles SB = 1 and Mr =
Ms/2 in the absence of thermal agitation (0 K), because
the magnetic moments are randomly oriented. SB mea-
sures the volume fraction of blocked particles at a given
temperature. In our case, SB ∼ 0.29 at a temperature
of 77 K because Mr/Ms ∼ 0.145 (Fig. 3, curve b). This
shows that at a frequency of 640 Hz of the field, approx-
imately 30% of the particles have blocked magnetic mo-
ments and the rest (70%) may invert at 180 degrees along
the easy magnetization axes due to the thermal activa-
tion. The value of 0.29 of SB is also influenced by the
increase of the frequency of the magnetization field when
the measuring time (tm) is getting closer to the relaxation
time τm. Compared to the static case, this has the effect
that a further portion of the magnetic moments, no longer
being able to follow the variations of the field, are blocked
at the temperature of 77 K and at a frequency of 640 Hz.
When the temperature increases more and more magnetic
moments receive the necessary energy to surpass the po-
tential barrier and accordingly invert. This will lead to a
gradual decrease of the remanent magnetization (Fig. 5)
until it becomes zero at approximately 250 K. Above this
temperature, up to 300 K, the thermodynamic equilib-
rium is always reached; the magnetization follows almost
instantly the field and in this way the hysteresis loop dis-
appears (Figs. 3, 5).
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4 Conclusions

An examination of a system of γ-Fe2O3 nanoparticles iso-
lated in a SiO2 solid matrix and placed in a magnetic field
with a frequency of 640 Hz has shown that the system has
a superparamagnetic behaviour in the temperature range
of (270−300) K. Below 270 K there are deviations due to
the fact that a dynamic hysteresis loop appears and grows.
This effect is attributed to the magnetic relaxation pro-
cesses that become evident and intensify with the decrease
of temperature. The determined relaxation time depends
on an effective anisotropy constant Keff , which is mostly
influenced by the strain anisotropies. As the temperature
decreases, there is a large increase in the saturation mag-
netization of the γ-Fe2O3 nanoparticles isolated in the sil-
ica matrix. In the range from 77 to 300 K the relative
increase of the saturation magnetization of the nanopar-
ticles is 7.54 times higher than that of the spontaneous
magnetization of bulk ferrite. We have shown that this
increase is due to the increase of the magnetic diameter
of the nanoparticles where the spins are ferrimagnetically
ordered.

The authors are grateful to Linde Gaz Romania for their sup-
port in obtaining low temperatures.
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J.P. Jolivet, D. Fiorani, R. Cherkaoui, M. Nogués, Phys.
Rev. B 53, 14291 (1996)

63. K. O’Grady, M. El-Hilo, R.W. Chantrell, IEEE Trans.
Magn. 29, 2608 (1993)

64. E.C. Stoner, E.P. Wohlfarth, Philos. Trans. R. Soc. Lon-
don, Ser. A 240, 599 (1948)


